MATH2050C Selected Solution to Assignment 10

2, 3, 4, 5, 6, 12, 13, 15, 17.

Section 5.3

- (1) By Max-min Theorem, f attains its minimum at some $z \in [a, b]$ and f(z) > 0 by assumption. It follows that $f(x) \ge f(z) > 0$ for all $x \in [a, b]$.
- (3) Define a sequence $\{x_n\}$ be $|f(x_{n+1})| \leq |f(x_n)|/2$ where $x_1 \in [a,b]$ is arbitrary. We have $|f(x_n)| \leq |f(x_1)|/2^{n-1}$, and so $\lim_{n\to\infty} |f(x_n)| \leq \lim_{n\to\infty} |f(x_1)|2^{1-n} = 0$. By Bolzano-Weierstrass, there is a subsequence $\{x_{n_j}\}$ converging to some $z \in [a,b]$. By continuity, $f(z) = \lim_{j\to\infty} f(x_{n_j}) = 0$. (Note that $\{a_n\}$ tends to 0 if and only if $\{|a_n|\}$ tends to 0.)
- (4) For a polynomial p of odd degree, p(x) at $\pm \infty$ must be of different sign. Hence, we can find a large x > 0 and a large y < 0 such f(x)f(y) < 0. Applying Root Theorem to p on [y, x] we find some $c \in [y, x]$ such that p(c) = 0.
- (5) p(-10) = 2991, p(0) = -9, and p(2) = 63. By the theorem on Existence of Zeros, there is a zero in (-10,0) and another in (0,2).
- (6) The function g satisfies g(0) = f(0) f(1/2) and g(1/2) = f(1/2) f(1) = f(1/2) f(0) = -g(0). It is also continuous on [0, 1/2]. If g(0) = 0, we are done. If $g(0) \neq 0$, $g(0)g(1/2) = -g(0)^2 < 0$, so the desired conclusion comes from the theorem on Existence of Zeros.

Note. An advanced result called the Borsuk-Ulam Theorem asserts that any continuous mapping ${\cal F}$ from the unit sphere

$$S = \left\{ x \in \mathbb{R}^n : \ x_1^2 + x_2^2 + \dots + x_n^2 = 1 \right\},\,$$

to \mathbb{R}^n satisfies the following property: There exists a point $p \in S$ so that F(p) = F(-p). This exercise is essentially the case n = 1.

- (12) The function $g(x) = \cos x x^2$ satisfies g(0) = 1 > 0 and $g(\pi/2) < 0$, so there is some $x_0 \in (0, \pi/2)$ such that $g(x_0) = 0$. Since $\cos x$ is strictly decreasing and x^2 is strictly increasing on $[0, \pi/2]$, g is strictly decreasing and x_0 is the unique zero for g. It means g(x) > 0, that is, $\cos x > x^2$ on $[0, x_0)$ and g(x) < 0, that is, $\cos x < x^2$ on $[0, x_0)$ and $f(x) = x^2$ on $[x_0, \pi/2]$. The conclusion comes from the fact that $\cos x > \cos x_0$ on $[0, x_0)$ and $[0, x_0)$ and $[0, x_0]$ and
- (13) As $f \to 0$ as $x \to \infty$, for $\varepsilon = 1$, there is some M such that |f(x) 0| < 1 for all $x, x \ge M$. Similarly, there is some N such that |f(x) 0| < 1 for all x, x < -N. On the other hand, by the Boundedness Theorem, there is some L such that $|f(x)| \le L$ for $x \in [N, M]$. We conclude that $|f(x)| \le \max\{1, L\}$.

In case f>0 somewhere, say, f(z)>0 for some z. Let $\varepsilon=f(z)/2>0$, we find K such that |f(x)-0|< f(z)/2 for all $x\in (-\infty,-K)\cup (K,\infty)$. So the supremum of f over $\mathbb R$ is equal to the supremum of f over [-K,K]. Now by the Max-min Theorem, we conclude the minimum is attained on [-K,K]. When f<0 everywhere, consider -f.

The function $f(x) = e^{-x^2}$ attains its maximum at x = 0 but its infimum, 0, is never attained.

- (15) $f(x) = x^2$ is increasing on $[0, \infty)$ hence any open (resp. closed) subinterval in $[0, \infty)$ is mapped onto an open (resp. closed) interval. Similarly, the function is decreasing on $(-\infty, 0]$, hence any open (resp. closed) subinterval in $(-\infty, 0]$ is mapped onto an open (resp. closed) interval. On the other hand, whenever (a, b) contains the origin, since f(0) = 0 is the minimum, the image of f((a, b)) is of the form [0, c) for some positive c.
- (17) Yes, f must be a constant function. Suppose not, there are rational numbers $r_1, r_2, r_1 < r_2$, such that $f(x) = r_1, f(y) = r_2$. Pick an irrational number h between r_1 and r_2 . Bolzano's Theorem asserts that f(z) = h for some z, contradicting the assumption on f.

Supplementary Problems

1. Let $f \in C[a,b]$. Suppose that f(x) > 0 for all $x \in [a,b]$. Show that there is some $\rho > 0$ such that $f(x) \ge \rho$ for all $x \in [a,b]$. Hint: Use Suppl. Problem no 3 in Ex 9 and apply the Heine-Borel Theorem.

Solution At each $x \in [a, b]$, f(x) > 0. Hence there is some $\delta_x > 0$ such that |f(y) - f(x)| < f(x)/2 for $y \in I_x \equiv (x - \delta_x, x + \delta_x)$. It follows that f(y) > f(x)/2, $y \in I_x$. (See Suppl Problem no 3 in Ex 9.) The collection of open intervals $\{I_x\}$ covers [a, b]. By Heine-Borel Theorem, there is a finite subcover from $\{I_x\}$. It follows that each $x \in [a, b]$ must belong to some I_{x_i} . Therefore, letting $\rho = \frac{1}{2} \min\{f(x_1), \dots, f(x_n)\}$, we have $f(x) \ge f(x_i)/2 \ge \rho > 0$.

- 2. Use the previous problem to deduce the Max-Min Theorem.
 - **Solution** First of all, by Boundedness Theorem f is bounded so that $\alpha \equiv \inf f$ is a finite number. Consider the continuous function $g(x) = f(x) \alpha$. When the minimum is not attained, g(x) > 0 everywhere. By the previous problem, there is some $\rho > 0$ such that $g(x) \ge \rho$, that is, $f(x) \ge \inf f + \rho$, contradicting the definition of infimum.
- 3. Let A be a set in $\mathbb R$ which contains at least two points and satisfies: Whenever $x,y\in A, x< y$, implies the interval $[x,y]\subset A$. Prove that A is an interval.

Solution Let's assume A is bounded so $a = \inf A$ and $b = \sup A$ are finite. (When A is unbounded on one side or both sides, the proof is similar.) We claim $(a,b) \subset A \subset [a,b]$ and this implies that A is an interval (closed, open, half-open). First of all, the second inclusion $A \subset [a,b]$ follows trivially from $a = \inf A \le x \le \sup A = b, x \in A$. On the other hand, let $x \in (a,b)$. From the definition of the infimum and supremum, we can find some $z \in A$ so close to a such that a < z < x. Similarly, there is some $w \in A$ so close to b such that x < w < b. By assumption $[z,w] \subset A$. In particular, $x \in A$. We have shown that $(a,b) \subset A$.